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J .  Phys. A: Math. Gen. 19 (1986) L1197-L1199. Printed in Great Britain 

LETTER TO THE EDITOR 

Rigid clusters enumeration 

V Prunet and R Blanc 
Dtpartement de Physique des Systemes DesordonnCs, Universitt de  Provence, UA 857 du 
CNRS, Centre de St Jtrbme, F13397 Marseille Cedex 13, France 

Received 9 October 1986 

Abstract. Animal counting techniques suggest that the fraction of rigid animals among all 
animals with s sites on a triangular lattice varies roughly as s”’ (0.46i0.01)’. 

Recently the mechanical behaviour of tenuous structures (as FI gels or corroded sheets) 
has received much attention. De Gennes (1976) originally suggested a percolation 
analysis using the formal analogy between the elastic problem and conductivity. 
Despite the fact that, due to the different tensorial characters of the two problems, the 
critical properties of elastic moduli near percolation threshold are different from those 
of conductivity, the de Gennes’ analysis has been the starting point of numerous works 
on this subject. Most of them simulate the tenuous material using a bond percolation 
network. 

Up to now, two important limit models have been studied. 
( a )  The bond-bending model. Here potential energy and elastic moduli near the 

threshold are controlled by the angles between two connected bonds (angular elasticity). 
In this model the elastic threshold is the same as for the conductivity but the critical 
exponent of elastic moduli, T, is different from the exponent t of the conductivity. 
The scaling hypothesis T = t + 2 v (Roux (1986) with earlier literature) recently received 
confirmation from computer simulations by Zabolitzky et a1 (1986). 

( b )  The central force model. Here the elastic energy depends on the distance between 
connected sites, each bond acting as a spring. In this model the threshold and critical 
exponents (Lemieux et a1 1985) are definitely different from those of the bond-bending 
problem. Note that, for the central force problem, honeycomb and square lattices do 
not exhibit rigidity. A recent paper (Day et a1 1986) emphasises the peculiar geometrical 
properties of that model and especially considers a new class of clusters, the rigid 
clusters, which are very different from the percolation ones. In this letter we thought 
it interesting to enumerate the rigid clusters and to compare their number with that 
of classical percolation animals. 

In this letter, a cluster of bonds is rigid if every site linked to it is constrained in 
all directions in the linear approximation of the central force model. 

There are two kinds of clusters of bonds: saturated (all the bonds between two 
nearest-neighbour sites exist) and unsaturated clusters. A given cluster may be rigid 
only if the corresponding saturated cluster is rigid. A cluster of s sites needs b’ 
constraints to be rigid. In two dimensions, b’ satisfies the relation 2s - b’ = 3 .  The 
number, b, of bonds in a rigid cluster is greater than or equal to b’ so that it must satisfy 

2s - b S  3 .  (1)  
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However, for s 2 10, there are clusters which are rigid only in a non-linear analysis 
and d o  not satisfy (1). We choose to restrict ourselves to clusters rigid in the linear 
approximation. So, using the standard algorithm (Redner 1982) for site cluster gener- 
ation ( a  saturated cluster is, in fact, a site cluster), we generate all saturated clusters 
up  to a size s,,, and for each of them we check the rigidity. In order to improve the 
speed of our  algorithm this test is performed in three steps. 

( i )  In the first, one rejects the cluster if there is a single-connected site; 
(ii) then one keeps only the clusters for which (1) is satisfied; 
( i i i )  after the two preceding steps, most of non-rigid clusters are rejected (cf table 

1) .  The rigidity of the remaining clusters is then checked using an  algorithm which 
deals with superbonds (any rigid cluster between two sites) and  triangles of super-bonds. 

After this third step, all the rigid saturated clusters have been kept. Then, from 
each of them and using the same algorithm, we build u p  all unsaturated and rigid 
clusters. From ( l ) ,  it is easily seen that one has obtained, in that way, all rigid clusters 
up to (2s,,, - 2 )  bonds. Nevertheless, some non-rigid (in the linear approximation) 
clusters are not rejected. Their relative number, compared with the total number of 
rigid clusters, is less than 1% from s = 10 to s = 13. 

Tables 1 and 2 summarise our numerical results for rigid clusters up  to 13 sites for 
saturated ones and up  to 24 bonds for all of them. In table 1, we give the number n, 
of rigid saturated clusters and, for comparison, the number a, of site percolation 
animals and the number nT of clusters kept after the two first steps of our algorithm. 
Before any numerical analysis of these data, one may remark that the number of 
saturated clusters is much lower than that of percolation animals. This is due  to the 
very severe geometrical constraints which must be satisfied to get a rigid cluster. 

Table 1. Rigid saturated clusters. Number of percolation animals, as, and rigid saturated 
animals, n,, as a function of number s of sites. nT gives the number of clusters satisfying 
the first two steps of our algorithm. 

Number of clusters 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
3 

11 
44 

186 
814 

3 652 
16 689 
77 359 

362 67 1 
1 716 033 
8 182 213 

39 267 086 

0 
3 
2 
3 
6 

14 
31 
69 

151 
341 
795 

1905 
4667 

0 
3 
2 
3 
6 

14 
31 
69 

151 
335 
747 

1671 
3749 

If we assume that the ratio A, between the number of rigid saturated clusters and  
that of percolation animals of the same size s is of the form: 

A, = Aossh ' (2) 
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Table2. Rigid clusters of bonds. Number of rigid clusters as a function of number of 
bonds. Note the oscillation between even and odd terms. 

Bonds Number Bonds Number 
b n h  b nh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

3 
0 
2 
0 
3 
0 
6 
0 

14 
0 

42 
1 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

135 
6 

460 
27 

1798 
143 

7 235 
687 

30 587 
3 327 

136 159 
16 589 

a standard data analysis (ratio plot, etc) gives 
A = 0.46 i 0.01 0 - 0.5. 

In table 2 we give the number n b  of rigid clusters (saturated and unsaturated) of 
b bonds. These data slightly overestimate (within lo%) the exact number of animals 
rigid in the linear approximation. The number of rigid clusters oscillates with the 
parity of b. The amplitude of this oscillation decreases for larger and larger clusters 
and is expected to be negligible for animals of sufficient size. We assume that n b  

asymptotically obeys the law: 

n b  = constant X b ''A b. 
We have computed A separately for even and odd values of b. In both cases we find 

A,=2.2*O0.1. 
Due to the oscillation of the data and to the uncertainty (-1"/0) in the exact number 

of rigid unsaturated clusters, it is not possible to determine 0 in that case. 
In conclusion, we made an enumeration of the rigid clusters on a triangular lattice, 

the number of which is considerably lower than that of percolation animals on the 
same lattice. The next step, which uses that enumeration in standard series expansions, 
is now in progress. 

This letter would not have been written without the friendly attention of D Stauffer. 
We are grateful to him for constructive discussions and critical reading of the manu- 
script. 
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